Your browser does not support JavaScript!
劉樹忠 Shu-Chung Liu
系所人員 Faculty - 專任教師  

劉樹忠  Shu-Chung Liu
劉樹忠 教授 職  稱 副教授
最高學歷 密西根州立大學數學博士
學術領域 代數組合、演算法、組合計算、編碼學、圖學
電  話 分機72722
傳  真  (03)5611228
辦  公  室  9624

國立新竹教育大學數學系 副教授
國立新竹教育大學數學系 助理教授

個  人  著  作





  1. S.-C. Liu , Yi. Wang and Y.N.Yeh,Chung-Feller Property in View of Generating Functions,The Electronic Journal of Combinatorics, 18 (2011) article p104.()SCI

  2. S.-C. Liu and J. Yeh,Catalan numbers modulo 2^k,Journal of Integer Sequences, 13 (2010) article 10.5.4 (NSC 96-2115-M-134-003-MY2, first and corresponding author)

  3. S.-C. Liu, Y. Wangand Y.-N. Yeh,Chung-Feller Property in View of Generating Functions,The electronic Journal of Combinatorics , accepted.(NSC 98-2115-M-134-005-MY3, SCI: 0.605, first and author)

  4. S.-C. Liu, J. Ma and Y.-N. Yeh, Dyck paths with peak- and valley-avoiding sets,Studies in Applied Mathematics, 121 (2008) 263—289 .

  5. S.-P. Eu, S.-C. Liu and Y.-N. Yeh, Catalan and Motzkin numbers modulo 4 and 8,European Journal of Combinatorics, in press.

  6. L.-H. Hsu, S.-C. Liu and Y.-N. Yeh, H amiltonicity of hypercubes with a constraint of required and faulty Edges, Journal of Combinatorial Optimization. 14, no. 2-3, (2007) 197—204.

  7. S.-P. Eu, S.-C. Liu and Y.-N. Yeh, On the congruences of some combinatorial numbers, Studies in Applied Mathematics, 116 issue 2 (2006) 135 — 144.

  8. S.-P. Eu, S.-C. Liu and Y.-N. Yeh, Odd or even on plane trees, Discrete Mathematics, 281, no. 1-3 (2004) 189—196.

  9. S.-P. Eu, S.-C. Liu and Y.-N. Yeh, Dyck paths with peaks avoiding or restricted to a given set, Studies in Applied Mathematics, 111 (2003) 453—465.

  10. S.-P. Eu, S.-C. Liu and Y.-N. Yeh, Taylor expansions for Catalan and Motzkin numbers, Advances in Applied Mathematics, 29 (2002) 345—357.

  11. S.-C. Liu , L.-D. Tong and Y.-N. Yeh, Trees with the minimum Wiener number, International Journal of Quantum Chemistry, 78 (2000) 331—340.

  12. S.-C. Liu and B. Sagan, Left-modular elements of lattices,Journal of Combinatorial Theory, Series A, 91 (2000) 369—385.


  1. 漢米爾頓性質的容錯性 NSC 90-2115-M-163-003

  2. 格子點路徑之研究 NSC 91-2115-M-163-001

  3. 泊車函數的推廣 NSC 92-2115-M-163-001

  4. 格子點路徑之研究二 (1/2) NSC 93-2115-M-163-001

  5. 格子點路徑之研究二 (2/2) NSC 94-2115-M-163-001

  6. (R,F)- 漢米爾頓性質 NSC 95-2115-M-163-002

  7. 組合數之模的研究 (1/2) NSC 96-2115-M-134-003-MY2

  8. 生成函數之研究, 從Chung-Feller定理出發

  9. 負責「 2006 年組合學研討會」舉辦於中國科技大學



Voice Play